Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypoxia (Auckl) ; 5: 67-74, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28770234

RESUMO

Chronic mountain sickness (CMS) is estimated at 1.2% in Tibetans living at the Qinghai-Tibetan Plateau. Eighteen single-nucleotide polymorphisms (SNPs) from nine nuclear genes that have an association with CMS in Tibetans have been analyzed by using pairwise linkage disequilibrium (LD). The SNPs included are the angiotensin-converting enzyme (rs4340), the angiotensinogen (rs699), and the angiotensin II type 1 receptor (AGTR1) (rs5186) from the renin-angiotensin system. A low-density lipoprotein apolipoprotein B (rs693) SNP was also included. From the hypoxia-inducible factor oxygen signaling pathway, the endothetal Per-Arnt-Sim domain protein 1 (EPAS1) and the egl nine homolog 1 (ENGL1) (rs480902) SNPs were included in the study. SNPs from the vascular endothelial growth factor (VEGF) signaling pathway included are the v-akt murine thymoma viral oncogene homolog 3 (rs4590656 and rs2291409), the endothelial cell nitric oxide synthase 3 (rs1007311 and rs1799983), and the (VEGFA) (rs699947, rs34357231, rs79469752, rs13207351, rs28357093, rs1570360, rs2010963, and rs3025039). An increase in LD occurred in 40 pairwise comparisons, whereas a decrease in LD was found in 55 pairwise comparisons between the controls and CMS patients. These changes were found to occur within and between signaling pathways, which suggests that there is an interaction between SNP alleles from different areas of the genome that affect CMS.

2.
Nat Commun ; 5: 5177, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25295779

RESUMO

Heart failure (HF) is associated with complicated molecular remodelling within cardiomyocytes; however, the mechanisms underlying this process remain unclear. Here we show that sorting nexin-13 (SNX13), a member of both the sorting nexin and the regulator of G protein signalling (RGS) protein families, is a potent mediator of HF. Decreased levels of SNX13 are observed in failing hearts of humans and of experimental animals. SNX13-deficient zebrafish recapitulate HF with striking cardiomyocyte apoptosis. Mechanistically, a reduction in SNX13 expression facilitates the degradative sorting of apoptosis repressor with caspase recruitment domain (ARC), which is a multifunctional inhibitor of apoptosis. Consequently, the apoptotic pathway is activated, resulting in the loss of cardiac cells and the dampening of cardiac function. The N-terminal PXA structure of SNX13 is responsible for mediating the endosomal trafficking of ARC. Thus, this study reveals that SNX13 profoundly affects cardiac performance through the SNX13-PXA-ARC-caspase signalling pathway.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Insuficiência Cardíaca/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Nexinas de Classificação/metabolismo , Animais , Caspase 8/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Peixe-Zebra
3.
J Cell Mol Med ; 17(9): 1119-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23837875

RESUMO

Sarcolemmal Na(+) /H(+) exchanger 1 (NHE1) activity is essential for the intracellular pH (pHi ) homeostasis in cardiac myocytes. Emerging evidence indicates that sarcolemmal NHE1 dysfunction was closely related to cardiomyocyte death, but it remains unclear whether defective trafficking of NHE1 plays a role in the vital cellular signalling processes. Dynamin (DNM), a large guanosine triphosphatase (GTPase), is best known for its roles in membrane trafficking events. Herein, using co-immunoprecipitation, cell surface biotinylation and confocal microscopy techniques, we investigated the potential regulation on cardiac NHE1 activity by DNM. We identified that DNM2, a cardiac isoform of DNM, directly binds to NHE1. Overexpression of a wild-type DNM2 or a dominant-negative DNM2 mutant with defective GTPase activity in adult rat ventricular myocytes (ARVMs) facilitated or retarded the internalization of sarcolemmal NHE1, whereby reducing or increasing its activity respectively. Importantly, the increased NHE1 activity associated with DNM2 deficiency led to ARVMs apoptosis, as demonstrated by cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay, Bcl-1/Bax expression and caspase-3 activity, which were effectively rescued by pharmacological inhibition of NHE1 with zoniporide. Thus, our results demonstrate that disruption of the DNM2-dependent retrograde trafficking of NHE1 contributes to cardiomyocyte apoptosis.


Assuntos
Apoptose , Dinamina II/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Sobrevivência Celular , Dinamina II/deficiência , Células HEK293 , Ventrículos do Coração/citologia , Humanos , Masculino , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Sarcolema/metabolismo
4.
Sheng Li Xue Bao ; 65(3): 269-75, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23788183

RESUMO

The present study was designed to investigate the role of opioid receptors in the vasorelaxation effect of chronic intermittent hypobaric hypoxia (CIHH) in thoracic aorta rings and the underlying mechanism in rats. Adult male Sprague-Dawley (SD) rats were randomly divided into 2 groups: CIHH treatment group and control group. The rats in CIHH group were exposed to hypoxia in a hypobaric chamber (simulated 5 000 m altitude) for 28 days, 6 h per day. The rats in control group were kept in the same environment as CIHH rats except no hypoxia exposure. The relaxation of thoracic aorta rings was recorded by organ bath perfusion technique, and expression of opioid receptors was measured by Western blot. Results are shown as follows. (1) The acetylcholine (ACh)-induced endothelium-dependent relaxation of thoracic aorta in CIHH rats was increased obviously in a concentration-dependent manner compared with that in control rats (P < 0.05). (2) This enhancement of ACh-induced relaxation in CIHH rats was abolished by naloxone, a non-specific opioid receptor blocker (P < 0.05). (3) The expressions of δ, µ and κ opioid receptors in thoracic aorta of CIHH rats were up-regulated compared with those in control rats (P < 0.05). (4) The enhancement of CIHH on relaxation of thoracic aorta was reversed by glibenclamide, an ATP-sensitive potassium channel (KATP) blocker (P < 0.05). The results suggest that opioid receptors are involved in CIHH-enhanced ACh-induced vasorelaxation of thoracic aorta through KATP channel pathways.


Assuntos
Acetilcolina/farmacologia , Aorta Torácica/efeitos dos fármacos , Hipóxia/fisiopatologia , Receptores Opioides/metabolismo , Altitude , Animais , Glibureto/farmacologia , Canais KATP/antagonistas & inibidores , Masculino , Ratos , Ratos Sprague-Dawley , Vasodilatação
5.
J Physiol Sci ; 63(3): 183-93, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23553563

RESUMO

Mountain sickness (MS) occurs among humans visiting or inhabiting high altitude environments. We conducted genetic analyses of seven single nucleotide polymorphisms (SNPs) in the promoter region of VEGFA gene for lowland (Han) and highland (Tibetan) Chinese. The seven SNPs were evaluated in Han and Tibetan patients with acute (A) and chronic (C) MS. We compared 64 patients with AMS with 64 Han unaffected with MS, as well as 48 CMS patients with 32 unaffected Tibetans. The SNPs studied are rs699947, rs34357231, rs79469752, rs13207351, rs28357093, rs1570360, and rs2010963 which are found in the promoter ranging from -2,578 to -634 bp from the transcriptional start site (TSS), respectively. Direct sequencing was used to identify individual genotypes for these SNPs. Arterial oxygen saturation of hemoglobin (SaO2) was found to be significantly associated with the rs699947, rs34357231, rs13207351, and rs1570360 SNPs in Han patients with AMS, while the rs2010963 SNP was found to approach significance in the AMS study group, but found to be significantly associated in the normal Tibetan study group. The Han and Tibetan control groups were found to diverge significantly for the rs28357093 and rs2010963 SNPs, as measured by genetic distances of 0.073 and 0.054, respectively. All the SNPs are found in transcriptional factor binding sites (TFBS), and their possible role in gene regulation was evaluated with regard to MS. MS was found to be significantly associated with these SNPs compared with their Han and Tibetan control groups, indicating that these nucleotide substitutions result in TFBS changes which apparently have a physiological effect on the development of high altitude sickness.


Assuntos
Doença da Altitude/genética , Povo Asiático/genética , Fator A de Crescimento do Endotélio Vascular/genética , Doença Aguda , Adulto , Sequência de Bases , Sítios de Ligação/genética , Etnicidade/genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo
6.
Biochem Biophys Res Commun ; 427(1): 73-9, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22975349

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP), which is synthesized by adenylyl cyclase (AC) and degraded by phosphodiesterase (PDE), plays crucial roles in the regulation of multiple cellular functions and physiological processes. Prolyl hydroxylase domain (PHD) proteins, which belong to a family of dioxygenases that function as oxygen sensors through their hydroxylation activity, have been implicated in multiple signaling pathways. Here, we aimed to determine whether PHD played a role in regulating intracellular cAMP level in cardiomyocytes. Through the overexpression/knockdown of the PHD gene and the measurement of the cAMP content, we found that PHD2, but not PHD1 or PHD3, acts as a regulator of intracellular cAMP. In neonatal rat cardiomyocytes and H9c2 cells, the overexpression of PHD2 increased the intracellular cAMP level, whereas the PHD2 knockdown reduced it. There was no alteration in the AC expression or activity in cells that overexpressed or downregulated PHD2. The overexpression of PHD2 decreased both the protein expression and the activity of phosphodiesterase 4D (PDE4D), whereas the PHD2 knockdown increased the PDE4D expression and activity. Co-immunoprecipitation experiments revealed a direct binding between PHD2 and PDE4D and liquid chromatography-tandem mass spectrometry analyses identified the specific hydroxylation sites on PDE4D. In conclusion, PHD2 may directly interact with PDE4D to function as a novel regulator of the intracellular cAMP levels in cardiomyocytes.


Assuntos
AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Miócitos Cardíacos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia , Miócitos Cardíacos/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos
7.
PLoS One ; 7(7): e41656, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848558

RESUMO

BACKGROUND: Hypobaric intermittent hypoxia (HIH) produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K(+) channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K(+) channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.


Assuntos
Altitude , Ambiente Controlado , Hipóxia/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Glibureto/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hipóxia/metabolismo , Canais KATP/metabolismo , Rim/inervação , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo
8.
Int J Hematol ; 96(2): 200-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22729570

RESUMO

Mountain sickness (MS) occurs among humans visiting or inhabiting high altitude environments. We conducted genetic analyses of the AKT3, ANGPTL4, eNOS3 and VEGFA genes in lowland (Han) and highland (Tibetan) Chinese. Ten single nucleotide polymorphisms (SNPs) were evaluated in Han and Tibetan patients with acute (A) and chronic (C) MS. We compared 74 patients with AMS to 79 Han unaffected with MS, as well as 48 CMS patients to 31 unaffected Tibetans. The ten SNPs studied are AKT3 (rs4590656, rs2291409), ANGPTL4 (rs1044250), eNOS3 (rs1007311, rs1799983) and VEGFA (rs79469752, rs13207351, rs28357093, rs1570360, rs3025039). Direct sequencing was used to identify individual genotypes for these SNPs. Hemoglobin (Hb), hematocrit (Hct), and red blood cell count (RBC) were found to be significantly associated with the AKT3 SNP (rs4590656), Hb was found to be associated with the eNOS3 SNP (rs1007311), and RBC was found to be significantly associated with the VEGFA SNP (rs1570360) in Tibetan patients with CMS. CMS patients were found to diverge significantly for both eNOS3 SNPs as measured by genetic distance (0.042, 0.047) and for the VEGFA SNP (rs28357093) with a genetic distance of 0.078 compared to their Tibetan control group. Heart rate (HR) was found to be significantly associated with the eNOS3 SNP (rs1799983) and arterial oxygen saturation of hemoglobin (SaO2) was found to be significantly associated with the VEGFA SNPs (rs13207351, rs1570360) in Han patients with AMS. The Han and Tibetan control groups were found to diverge significantly for the ANGPTL4 SNP and VEGFA SNP (rs28357093), as measured by genetic distances of 0.049 and 0.073, respectively. Seven of the SNPs from non-coding regions are found in the transcriptional factor response elements and their possible role in gene regulation was evaluated with regard to MS. AMS and CMS were found to be significantly associated with the four genes compared to their Han and Tibetan control groups, respectively, indicating that these nucleotide alterations have a physiological effect for the development of high altitude sickness.


Assuntos
Doença da Altitude/genética , Altitude , Angiopoietinas/genética , Povo Asiático/genética , Óxido Nítrico Sintase Tipo III/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator A de Crescimento do Endotélio Vascular/genética , Alelos , Proteína 4 Semelhante a Angiopoietina , China , Feminino , Frequência do Gene , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Elementos de Resposta
10.
Blood Cells Mol Dis ; 49(2): 67-73, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22595196

RESUMO

High altitude sickness (HAS) occurs among humans visiting or inhabiting high altitude environments. Genetic differences in the EPAS1 and EGLN1 genes have been found between lowland (Han) and highland (Tibetan) Chinese. Three SNPs within EPAS1 and EGLN1 were evaluated in Han and Tibetan patients with acute mountain sickness (AMS) and chronic mountain sickness (CMS). We compared 85 patients with AMS to 79 Han unaffected with mountain sickness (MS) as well as 45 CMS patients to 34 unaffected Tibetan subjects. The three SNPs studied were EPAS1 [ch2: 46441523 (hg18], EGLN1 (rs480902) and (rs516651). Direct sequencing was used to identify individual genotypes for the three SNPs. Age was found to be significantly associated with the EPAS1 SNP in the CMS patients while heart rate (HR) and oxygen saturation level of hemoglobin (SaO(2)) were found to be significantly associated with the EGLN1 (rs480902) SNP in the Han patients with AMS. The individuals with CMS were found to diverge significantly for the EPAS1 SNP compared to their Tibetan control group as measured by genetic distance (0.123) indicating positive selection of the EPAS-G allele with age and illness. The EGLN1 (rs480902) SNP had a significant correlation with hematocrit (HCT), HR and SaO(2) in AMS patients. AMS and CMS were found to be significantly associated with the EPAS1 and EGLN1 SNPs compared to their Han and Tibetan control groups, respectively, indicating these nucleotide alterations have a physiological effect for the development of high altitude sickness.


Assuntos
Doença da Altitude/genética , Povo Asiático , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Polimorfismo de Nucleotídeo Único , Pró-Colágeno-Prolina Dioxigenase/genética , Doença Aguda , Adulto , Fatores Etários , Alelos , Altitude , Doença da Altitude/etnologia , China/epidemiologia , Feminino , Genótipo , Frequência Cardíaca , Hemoglobinas/metabolismo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Análise de Sequência de DNA
11.
Exp Physiol ; 97(10): 1105-18, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22562809

RESUMO

Intermittent hypobaric hypoxia (IHH) is an effective protective strategy against myocardial ischaemia-reperfusion (I/R) injury, but the precise mechanisms are far from clear. To understand the overall effects of IHH on the myocardial proteins during I/R, we analysed functional performance and the protein expression profile in isolated hearts from normoxic rats and from rats adapted to IHH (5000 m, 4 h day(-1), 4 weeks) following I/R injury (30 min/45 min). Intermittent hypobaric hypoxia significantly improved the postischaemic recovery of left ventricular function compared with the recovery in time-matched normoxic control hearts. Two-dimensional electrophoresis with matrix-assisted laser desorption/ionization and time-of-flight mass spectrometric analysis was then used to assess protein alterations in left ventricles from normoxic and IHH groups, with or without I/R. The expressions of 16 proteins changed by over fivefold; nine of these proteins are involved in energy metabolism. Immunoblot and real-time PCR analysis confirmed the IHH-increased expressions of the ATP synthase subunit ß, mitochondrial aldehyde dehydrogenase and heat shock protein 27 in left ventricles. Furthermore, IHH significantly attenuated the reduction of myocardial ATP content, mitochondrial ATP synthase activity, membrane potential and respiratory control ratios due to I/R. In addition, inhibition of mitochondrial ATP synthase by oligomycin (1 µmol l(-1)) abolished the IHH-induced improvements in three parameters: postischaemic recovery of left ventricular function, mitochondrial membrane potential and respiratory control ratios. These results suggest that an improvement in mitochondrial energy metabolism makes an important contribution to the cardioprotection afforded by IHH against postischaemic myocardial dysfunction.


Assuntos
Hipóxia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Trifosfato de Adenosina/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Metabolismo Energético , Proteínas de Choque Térmico HSP27/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Potencial da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda/fisiologia
12.
Chin J Physiol ; 55(1): 62-70, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22242956

RESUMO

Our previous study showed that chronic intermittent hypobaric hypoxia (CIHH) could prevent decreases in systemic arterial blood pressure (SABP) during acute hypoxia. However, the mechanism was not clear. The purpose of the present study was to observe whether the carotid sinus baroreflex (CSB) was involved in the antagonizing effect of CIHH on SABP decrease induced by acute hypoxia and to explore the underlying mechanism using perfusion technique in rat isolated carotid sinus area. After 14-day and 28-day CIHH exposure, the CSB in rats was enhanced markedly, manifesting as increases in PS and RD, and decreases in TP and SP. This facilitation of CSB was partly abolished by Glibenclamide (Gli, 10 µM), a K ATP channel blocker, but was not influenced by L-NAME (100 µM), a nitric oxide synthase (NOS) inhibitor. The results of the study suggested that CIHH facilitated CSB through opening the K ATP channels in carotid sinus of anesthetic rats and might be one of mechanisms of CIHH keeping SABP homeostasis during acute hypoxia.


Assuntos
Barorreflexo , Seio Carotídeo/fisiopatologia , Hipóxia/fisiopatologia , Anestesia , Animais , Gasometria , Pressão Sanguínea , Peso Corporal , Glibureto , Hipoglicemiantes , Hipóxia/patologia , Masculino , Miocárdio/patologia , NG-Nitroarginina Metil Éster , Tamanho do Órgão , Perfusão , Ratos , Ratos Sprague-Dawley
13.
Cardiovasc Ther ; 30(1): 12-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20553295

RESUMO

AIMS: Microtubule disruption contributes to cellular and organic dysfunction, and is implicated in ischemia/reperfusion (I/R) injury. The purpose of this study was to explore the effects of taxol, a microtubule stabilizer, on cardiac functional recovery during reperfusion. METHODS: Left ventricular developed pressure, left ventricular end-diastolic pressure, maximal time derivatives of pressure and the severity of ventricular arrhythmias were analyzed in isolated rat heart. Microtubule structure was immunohistochemically measured. Apoptosis and necrosis was identified with TUNEL or TTC staining, respectively. Mitochondrial permeability transition pore (mPTP) mRNA expression was examined by real-time polymerase chain reactions. mPTP opening, reactive oxygen species (ROS), and oxidative enzyme activities were measured with fluorometric or spectrophotometric techniques. Intracellular calcium concentration ([Ca(2+) ](i) ) and Ca(2+) transients were examined by Fura-2-AM and Fluo-3-AM, respectively. Cytosolic cytochrome c, sarcoplasmic reticulum Ca(2+) -ATPase (SERCA2), ryanodine receptors (RyR), phospholamban (PLB), and PLB phosphorylation were analyzed by Western blot. Effective refractory period (ERP) and afterpotential-mediated activity were detected using microelectrode. RESULTS: Taxol improved the functional recovery of post-I/R. Taxol preserved the intact microtubule structure in reperfusion. mPTP mRNA expression was unchanged while the mPTP opening was reduced by taxol, and this effect was accompanied by the decreased ROS level caused by oxidative enzymes activities' changes. Taxol reduced apoptosis and the level of cytosolic cytochrome c in reperfusion. Taxol also promoted rapid recovery of [Ca(2+) ](i) , prevented reduction of the amplitude of Ca(2+) transients and shortened the decay time of Ca(2+) transients. The protein expression of SERCA2, RyR, and PLB remained unchanged in reperfusion. Taxol prevented the increase of Phospho-Thr17-PLB and Phospho-Ser16-PLB in reperfusion. In addition, taxol facilitated rapid recovery of ERP and counter-acted afterpotential-mediated activity. CONCLUSION: Taxol may effectively improve cardiac functional recovery during reperfusion via inhibiting mPTP opening, ameliorating abnormal calcium homeostasis, and reducing the substrates associated with arrhythmias.


Assuntos
Microtúbulos/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Potenciais de Ação , Animais , Apoptose/efeitos dos fármacos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Técnicas In Vitro , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Necrose , Estresse Oxidativo/efeitos dos fármacos , Perfusão , Fosforilação , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Pressão Ventricular/efeitos dos fármacos
14.
Eur J Appl Physiol ; 112(3): 1037-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21735218

RESUMO

Intermittent hypoxia (IH) markedly enhances cardiac tolerance against ischemia/reperfusion injury, but its mechanism and molecular basis remain unclear. For exploring the expression of mitochondrial proteins induced by IH, two-dimensional electrophoresis and Thermo Finnigan LTQ mass spectrometer (MS) were applied. After comparing the protein profiles of myocardial mitochondria between IH and normoxic hearts, 14 protein spots were found to be altered more than threefold between the two groups, 11 of which were identified by Finnigan LTQ MS. Among these 11 proteins, 9 were involved in energy metabolism, including 7 that were increased after IH. The latter were identified as aldehyde dehydrogenase, methylmalonate-semialdehyde dehydrogenase, ATP synthase ß chain, mitochondrial aconitase, malate dehydrogenase, electron transfer flavoprotein α subunit and sirtuin 5. Two other proteins, ubiquinol-cytochrome C reductase iron-sulfur subunit and aspartate aminotransferase, were decreased after IH. Biochemical tests for energy metabolism in mitochondria supported the proteomic results. IH exposure also increased the expression of a molecular chaperone-heat shock protein 60 and an antioxidant protein, peroxiredoxin 5. These findings will provide clues for understanding the mechanism of IH-induced cardiac protection and may lead to the development of interventional strategies designed to utilize the advantages of IH clinically.


Assuntos
Hipóxia/metabolismo , Proteínas Mitocondriais/análise , Miócitos Cardíacos/química , Proteômica , Animais , Eletroforese em Gel Bidimensional , Hipóxia/patologia , Masculino , Espectrometria de Massas , Mitocôndrias Cardíacas/química , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Periodicidade , Proteoma/análise , Proteômica/métodos , Ratos , Ratos Sprague-Dawley
15.
Artigo em Inglês | MEDLINE | ID: mdl-23581179

RESUMO

Myocardial ischemia and reperfusion (I/R) is a common problem in clinic and there is no satisfactory method for prevention or treatment of I/R injury so far. Chronic intermittent hypobaric hypoxia (CIHH), similar to the concept of ischemia preconditioning (IPC)or altitude hypoxia adaptation (AHA), has been recognized to confer a protective effect on heart against I/R injury with a longer protective effect than IPC and a less adverse effect than AHA. It has been proved that CIHH increases myocardial tolerance to ischemia or hypoxia, reserving cardiac function and preventing arrhythmia during I/R. Multiple mechanisms or pathway underlying the cardiac protection of CIHH have been proposed, such as induction of heat-shock protein, enhancement of myocardial antioxidation capacity, increase of coronary flow and myocardial capillary angiogenesis, activation of adenosine triphosphate (ATP)-sensitive potassium channels, inhibition of mitochondrial permeability transition pores, and activation of protein kinase C (PKC) and induced nitric oxide synthase (iNOS). In addition, CIHH has been found having many beneficial effects on the body, such as promotion of health, increase of oxygen utilization, and prevention or treatment for some diseases. The beneficial effects of CIHH and potential mechanisms are reviewed mainly based on the researches performed by our group.


Assuntos
Hipóxia , Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Coração/fisiopatologia , Proteínas de Choque Térmico/metabolismo , Humanos , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Óxido Nítrico Sintase Tipo II , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Traumatismo por Reperfusão/fisiopatologia
16.
Am J Physiol Heart Circ Physiol ; 301(4): H1695-705, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821784

RESUMO

Intermittent hypobaric hypoxia (IHH) protects hearts against ischemia-reperfusion (I/R) injury, but the underlying mechanisms are far from clear. ROS are paradoxically regarded as a major cause of myocardial I/R injury and a trigger of cardioprotection. In the present study, we investigated whether the ROS generated during early reperfusion contribute to IHH-induced cardioprotection. Using isolated perfused rat hearts, we found that IHH significantly improved the postischemic recovery of left ventricular (LV) contractile function with a concurrent reduction of lactate dehydrogenase release and myocardial infarct size (20.5 ± 5.3% in IHH vs. 42.1 ± 3.8% in the normoxic control, P < 0.01) after I/R. Meanwhile, IHH enhanced the production of protein carbonyls and malondialdehyde, respective products of protein oxidation and lipid peroxidation, in the reperfused myocardium and ROS generation in reperfused cardiomyocytes. Such effects were blocked by the mitochondrial ATP-sensitive K(+) channel inhibitor 5-hydroxydecanoate. Moreover, the IHH-improved postischemic LV performance, enhanced phosphorylation of PKB (Akt), PKC-ε, and glycogen synthase kinase-3ß, as well as translocation of PKC-ε were not affected by applying H(2)O(2) (20 µmol/l) during early reperfusion but were abolished by the ROS scavengers N-(2-mercaptopropionyl)glycine (MPG) and manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin. Furthermore, IHH-reduced lactate dehydrogenase release and infarct size were reversed by MPG. Consistently, inhibition of Akt with wortmannin and PKC-ε with εV1-2 abrogated the IHH-improved postischemic LV performance. These findings suggest that IHH-induced cardioprotection depends on elevated ROS production during early reperfusion.


Assuntos
Hipóxia/fisiopatologia , Contração Miocárdica/fisiologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica , Transdução de Sinais/fisiologia , Pressão do Ar , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/fisiologia , Cistina/análogos & derivados , Cistina/farmacologia , Ativação Enzimática/fisiologia , Canais KATP/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/fisiologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Proteína Oncogênica v-akt/metabolismo , Proteína Oncogênica v-akt/fisiologia , Oxirredução , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica
17.
Sheng Li Xue Bao ; 63(3): 205-10, 2011 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-21681337

RESUMO

The present study is aimed to investigate the effect of chronic intermittent hypobaric hypoxia (CIHH) on contractile activities in isolated thoracic aorta and pulmonary artery rings and the underlying mechanism in rats. Sprague-Dawley (SD) rats were randomly divided into 4 groups: control group (CON), 14 days CIHH treatment group (CIHH14), 28 days CIHH treatment group (CIHH28) and 42 days CIHH treatment group (CIHH42). CIHH rats were exposed to hypoxia in a hypobaric chamber simulating 5 000 m altitude, 6 h daily for 14, 28 and 42 d, respectively. After artery rings were prepared from pulmonary artery and thoracic aorta, the contractile activity of the artery rings was recorded using organ bath technique. Results are shown as follows. (1) There were no significant differences of noradrenaline (NA)- and KCl-induced contractions in thoracic aorta and pulmonary artery rings among CIHH and CON rats. (2) Angiotensin Ⅱ (ANGⅡ)-induced contraction in thoracic aorta rings, not in pulmonary artery rings, of CIHH rats was decreased compared with that in CON rats. There was no significant difference of ANGⅡ-induced contraction in thoracic aorta rings among CIHH rats. (3) Inhibitory effect of CIHH on ANGⅡ-induced contraction in thoracic aorta rings was endothelium-independent, and was reversed by glibenclamide (Gli), an ATP-sensitive potassium channels (K(ATP)) blocker, and L-NAME, a NO synthase inhibitor, but not by indomethacin (Indo), a cyclooxygenase inhibitor. These results suggest that CIHH attenuates the contraction induced by ANGⅡ in thoracic aorta rings of rat, which is related to the opening of K(ATP) channel and the increased production of NO.


Assuntos
Aorta Torácica/fisiopatologia , Hipóxia/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Angiotensina II/farmacologia , Animais , Canais KATP/metabolismo , Masculino , Contração Muscular/fisiologia , Óxido Nítrico/biossíntese , Ratos , Ratos Sprague-Dawley
18.
Basic Res Cardiol ; 106(3): 329-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21298517

RESUMO

Intermittent hypobaric hypoxia (IHH) preconditioning protects the heart against ischemic injuries. However, little is known about the therapeutic effect of IHH on myocardial infarction (MI). The aim of this study was to test whether IHH treatment influences infarct size and cardiac performance after MI. Seven days after sham operation or left anterior descending coronary artery ligation, male Sprague-Dawley rats were randomly exposed to normoxia or one 6-h period each day of IHH (5,000 m) for 14 and 28 days. Echocardiography analysis showed that IHH significantly reduced left ventricular (LV) dilation and improved cardiac performance after 14- or 28-day treatment compared with MI-normoxic groups. The improvement of LV function was further confirmed in isolated perfused MI-IHH hearts. Such protection was associated with attenuated infarct size, myocardial fibrosis, and apoptotic cardiomyocytes. IHH treatment also enhanced coronary flow and phosphorylation of heat shock protein 27 in both sham and MI groups compared with the control groups. In addition, IHH increased the capillary density and vascular endothelial growth factor expression in peri-infarcted zones compared with sham-IHH and MI-normoxic groups. Our data demonstrated for the first time that IHH treatment exerts a therapeutic effect on MI by attenuating progressive myocardial remodeling and improving myocardial contractility. IHH treatment might provide a unique and promising therapeutic approach for ischemic heart diseases.


Assuntos
Hipóxia/complicações , Hipóxia/fisiopatologia , Precondicionamento Isquêmico Miocárdico/métodos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/fisiopatologia , Animais , Apoptose/fisiologia , Western Blotting , Marcação In Situ das Extremidades Cortadas , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Remodelação Ventricular
19.
J Cell Mol Med ; 15(12): 2712-22, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21255264

RESUMO

Adrenergic receptor (AR)-mediated signalling is modulated by oxygen levels. Prolyl hydroxylases (PHDs) are crucial for intracellular oxygen sensing and organism survival. However, it remains to be clarified whether or how PHDs are involved in the regulation of ß(2) -adrenoceptor (ß(2) -AR) signalling. Here we show that PHD2 can modulate the rate of ß(2) -AR internalization through interactions with ß-arrestin 2. PHD2 hydroxylates ß-arrestin 2 at the proline (Pro)(176), Pro(179) and Pro(181) sites, which retards the recruitment of ß-arrestin 2 to the plasma membrane and inhibits subsequent co-internalization with ß(2) -AR into the cytosol. ß(2) -AR internalization is critical to control the temporal and spatial aspects of ß(2) -AR signalling. Identifying novel regulators of ß(2) -AR internalization will enable us to develop new strategies to manipulate receptor signalling and provide potential targets for drug development in the prevention and treatment of diseases associated with ß(2) -AR signalling dysregulation.


Assuntos
Arrestinas/metabolismo , Membrana Celular/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Células Cultivadas , Citosol/metabolismo , Endocitose , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia , Imunoprecipitação , Rim/citologia , Rim/metabolismo , Fosforilação , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Arrestina 2 , beta-Arrestinas
20.
J Cell Mol Med ; 15(5): 1166-76, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20561109

RESUMO

Microtubule integrity is important in cardio-protection, and microtubule disruption has been implicated in the response to ischemia in cardiac myocytes. However, the effects of Taxol, a common microtubule stabilizer, are still unknown in ischemic ventricular arrhythmias. The arrhythmia model was established in isolated rat hearts by regional ischemia, and myocardial infarction model by ischemia/reperfusion. Microtubule structure was immunohistochemically measured. The potential mechanisms were studied by measuring reactive oxygen species (ROS), activities of oxidative enzymes, intracellular calcium concentration ([Ca(2+) ](i) ) and Ca(2+) transients by using fluorometric determination, spectrophotometric assays and Fura-2-AM and Fluo-3-AM, respectively. The expression and activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) was also examined using real-time polymerase chain reaction, Western blot and pyruvate/Nicotinamide adenine dinucleotide-coupled reaction. Our data showed that Taxol (0.1, 0.3 and 1 µM) effectively reduced the number of ventricular premature beats and the incidence and duration of ventricular tachycardia. The infarct size was also significantly reduced by Taxol (1 µM). At the same time, Taxol preserved the microtubule structure, increased the activity of mitochondrial electron transport chain complexes I and III, reduced ROS levels, decreased the rise in [Ca(2+)](i) and preserved the amplitude and decay times of Ca(2+) transients during ischemia. In addition, SERCA2a activity was preserved by Taxol during ischemia. In summary, Taxol prevents ischemic ventricular arrhythmias likely through ameliorating abnormal calcium homeostasis and decreasing the level of ROS. This study presents evidence that Taxol may be a potential novel therapy for ischemic ventricular arrhythmias.


Assuntos
Arritmias Cardíacas/prevenção & controle , Infarto do Miocárdio/prevenção & controle , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Cálcio/análise , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...